首页> 外文OA文献 >A Markov Chain Monte Carlo approach to the study of massive black hole binary systems with LISA
【2h】

A Markov Chain Monte Carlo approach to the study of massive black hole binary systems with LISA

机译:马尔可夫链蒙特卡罗方法研究LISA大规模黑洞二元系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Laser Interferometer Space Antenna (LISA) will produce a data stream containing a vast number of overlapping sources: from strong signals generated by the coalescence of massive black hole binary systems to much weaker radiation form sub-stellar mass compact binaries and extreme-mass ratio inspirals. It has been argued that the observation of weak signals could be hampered by the presence of loud ones and that they first need to be removed to allow such observations. Here we consider a different approach in which sources are studied simultaneously within the framework of Bayesian inference. We investigate the simplified case in which the LISA data stream contains radiation from a massive black hole binary system superimposed over a (weaker) quasi-monochromatic waveform generated by a white dwarf binary. We derive the posterior probability density function of the model parameters using an automatic Reversible Jump Markov Chain Monte Carlo algorithm (RJMCMC). We show that the information about the sources and noise are retrieved at the expected level of accuracy without the need of removing the stronger signal. Our analysis suggests that this approach is worth pursuing further and should be considered for the actual analysis of the LISA data.
机译:激光干涉仪空间天线(LISA)将产生包含大量重叠源的数据流:从巨大黑洞双星系统的合并产生的强信号,到亚星质量紧凑双星和极高质量比的弱得多的辐射灵感。有人争辩说,微弱信号的观察可能会因大声信号的存在而受阻,因此首先需要将其去除以进行此类观察。在这里,我们考虑了一种不同的方法,其中在贝叶斯推理的框架内同时研究源。我们研究简化的情况,其中LISA数据流包含来自大量黑洞二进制系统的辐射,该辐射叠加在由白矮星二进制文件生成的(较弱)准单色波形上。我们使用自动可逆跳跃马尔可夫链蒙特卡洛算法(RJMCMC)得出模型参数的后验概率密度函数。我们表明,有关源和噪声的信息可以按预期的准确度进行检索,而无需删除更强的信号。我们的分析表明,这种方法值得进一步追求,并且应该在LISA数据的实际分析中考虑使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号